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ABSTRACT

Debugging persistent memory (PM) programs faces a fundamental

tradeoff between performance overhead and bug coverage (com-

prehensiveness). Large performance overhead or limited bug cov-

erage makes debugging infeasible or ineffective for PM programs.

We present PMDebugger, a debugger that detects crash consis-

tency bugs in PM programs. Unlike prior work, PMDebugger is fast,

flexible and comprehensive. The design of PMDebugger is driven

by a characterization that shows how three fundamental opera-

tions in PM programs (store, cache writeback and fence) typically

occur in PM programs. PMDebugger uses a hierarchical design

composed of PM debugging-specific data structures, operations

and bug-detection algorithms (rules). We generalize nine rules to

detect crash-consistency bugs for various PM persistency mod-

els. Compared with a state-of-the-art detector (XFDetector) and an

industry-quality detector (Pmemcheck), PMDebugger leads to 49.3x

and 3.4x speedup on average. Compared with another state-of-the-

art detector (PMTest) optimized for high performance, PMDebugger

achieves comparable performance (within a factor of 2), without

heavily relying on programmer annotations, and detects 38 more

bugs on ten applications. PMDebugger also identifies more bugs

than XFDetector and Pmemcheck. PMDebugger detects 19 new

bugs in a real application (memcached) and two new bugs from

Intel PMDK.

CCS CONCEPTS

·Hardware→Memory and dense storage; · Software and its

engineering→ Software testing and debugging.
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1 INTRODUCTION

Persistent memory (PM) is high performance, byte-addressable,

and persistent. PMs are often paired with DRAM on the memory

bus and can be accessed via load/store instructions, enabling direct

manipulation of persistent data in memory. PMs have been widely

studied in many software systems that are expected to recover to a

consistent state and be able to resume execution in the event of a

failure (e.g., system crash or power failure). Those systems include

databases [1, 10, 35, 50], file systems [17, 26, 30, 32, 55, 56], key-

value stores [3, 27, 52, 54] and indexes [34, 40, 42, 58, 59]. The ability

to restore to a consistent state is often called the crash consistency

guarantee [8, 38, 48].

Developing a crash-consistent PM application is challenging,

because it requires both data durability (ensuring that the data

reaches the persistence domain) and ordering constraints (ensuring

that updates become visible in the correct order). For example, in a

key-value store, when a new key-value pair is inserted, the value

must be created and persisted before the key. However, caching

and reordering of writes in the memory hierarchy makes it difficult

to establish data durability and ordering guarantees. To enforce

data persistence, new instructions, such as CLWB [9], have been

introduced to efficiently write back cache lines to memory; To pro-

vide ordering guarantees, new instructions, such as SFENCE [9],

have been introduced to order memory stores. On top of these

low level instructions, there are higher-level transactional abstrac-

tions provided by some user-space libraries [4, 15, 51] to simplify

programming.

Crash-consistent programs can have PM-specific bugs not seen

in the traditional programs. Those bugs happen under different per-

sistency models that order persists [18, 45]. Some bugs are caused

by missing data durability or violating ordering guarantee in the

persistent model, making the program unrecoverable after a crash.

Unnecessary cache writebacks hurt performance. Identifying those

bugs is critical to the success of PM-aware applications.
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However, PM debuggers are often slow, which makes bug detec-

tion infeasible. For example, Pmemcheck (an industry-quality bug

detector) and XFDetector (a state-of-the-art bug detector) introduce

218x slowdown (two hours) and 1000x slowdown (nine hours) re-

spectively to application execution, when debugging a PM-aware

real workload, memcached [35] with 1M persist operations. Such

large performance overhead comes from instrumentation of mem-

ory stores, cache writebacks, memory fence instructions, and rea-

soning about the durability and ordering of persist operations; as

well as from bookkeeping which can often dominate total overhead

(e.g., 82% on average in Pmemcheck using benchmarks listed in

Table 4). In particular, whenever there is a store, debugger tools

record the PM location that has been modified. Whenever there is a

cache writeback or fence, the debugger searches these locations to

update the persistency status. Given a program with a large number

of stores, cache writebacks and fences, frequent bookkeeping and

expensive searching is the main overhead for time-consuming PM

debugging.

To reduce performance overhead, some existing debuggers, e.g.,

PMTest [39] heavily rely on the programmer to add assertion-like

checkers to selectively test durability and ordering guarantees. Fur-

thermore, to support debugging for a given persistency model,

this method requires the programmer to introduce new checkers

into the program and re-annotate it. Adding checkers requires the

programmer to have deep understanding of application semantics,

persistency model and hardware primitives employed in the model,

which imposes a heavy burden on the programmer. As a result, this

method has limited bug coverage, which means some bugs cannot

be detected due to missing programmer-added checkers.

In conclusion, debugging PM programs faces a fundamental

tradeoff between performance overhead and bug coverage. Large

performance overhead or limited bug coverage makes debugging

ineffective or even infeasible for PM programs. We present PMDe-

bugger, a tool to detect crash consistency bugs. Unlike prior work,

it is fast, flexible and finds more bugs in PM Programs.

PMDebugger is fast. It enables high-speed debugging by intro-

ducing a highly efficient bookkeeping and updating mechanism.

This mechanism is driven by a characterization study on how three

fundamental operations in PM programs (store, cache writeback

and fence) are interleaved and distributed in typical PM programs.

Based on the study, we introduce two optimization techniques: (1)

collectively managing the status of memory locations, and (2) using

a hybrid data structure for bookkeeping. Using (1), PMDebugger

is able to greatly accelerate deletion of records when processing

fence instructions, and updating records when processing cache

writeback instructions. For (2), PMDebugger combines an AVL

tree and an array. Leveraging the strength of each data structure,

PMDebugger splits and distributes the records of memory locations,

based on the record lifetime, frequency of operations, and overhead

of data structure maintenance. Our design leverages a character-

ization of PM programs, which is largely ignored in existing PM

debuggers [8, 11, 33, 38, 39]. With consideration of the program

characterization, PMDebugger is able to greatly reduce the perfor-

mance overhead of PM debugging without losing bug coverage,

hence breaking the fundamental tradeoff between the two.

PMDebugger is flexible. It allows the user to introduce any rule

for bug detection because PMDebugger can efficiently process the

three fundamental operations (store, cache writeback and fence). In

essence, PMDebugger uses a hierarchical design composed of PM

debugging-specific data structures, operations and bug-detection

algorithms (rules)

Given the flexibility provided by PMDebugger, we generalize

nine rules to detect crash-consistency bugs for various persistency

models. Among the nine, four of them are unique to the emerging

relaxed persistency models [18, 45]).

PMDebugger finds more bugs, because we have reduced over-

head sufficiently to allow for more in-depth program analysis and

PMDebugger has capability to detect various bugs for various per-

sistency models. Using PMDebugger, we are able to identify bugs

not identifiable by the existing tools [8, 11, 33, 38, 39].

In conclusion, we make the following contributions.

• We characterize PM programs in terms of how store, cache write-

back and fence typically happen, shedding lights on the efficient

design of a PM debugger;

• We introduce PMDebugger, a fast and flexible PM debugger that

finds more bugs than previous work. It is open-sourced [46]. We

generalize nine detection rules for various persistency models.

• Compared with a state-of-the-art detector (XFDetector) and an

industry-quality detector (Pmemcheck), PMDebugger leads to

49.3x and 3.4x speedup on average. Compared with another state-

of-the-art detector (PMTest), which is optimized for high perfor-

mance, PMDebugger achieves comparable performance (within a

factor of 2), without heavily relying on programmer annotations

yet detects 38 more bugs than PMTest on ten applications.

• PMDebugger identifies 78 synthetic or reproduced bugs (ten bug

types), while XFDetector, Pmemcheck and PMTest identify 65

(six bug types), 55 (four bug types) and 61 bugs (five bug types)

respectively. More importantly, PMDebugger detects 19 new bugs

in a real application (memcached [35]) and two new bugs from

the Intel PMDK (the two bugs are confirmed by Intel [12, 14]).

2 BACKGROUND

2.1 Programming with Persistent Memory

A crash-consistent PM program uses store, writeback and fence

instructions. A storemodifies a persistentmemory location (or a data

object). A writeback persists a dirty memory location by flushing it

out of the cache hierarchy. We use writeback, cache line flushing

(CLF), and persist operation interchangeably in this paper. We use

the term persistency status to indicate whether a memory location

has been persisted by writeback. A fence ensures the completion

of writeback and enforces ordering constraints among writes.

2.2 Recent Development in Bug Detection for
PM

There are several tools to detect crash consistency bugs. We com-

pare them in Table 1 from multiple perspectives. In terms of tar-

get software, some tools focus on file systems (such as Yat [33]

for PMFS [47]) or user-space PM libraries (e.g., Pmemcheck for

PMDK [15]), while PMDebugger can work for any user-space appli-

cation. In terms of programming efforts, the state-of-the-art tools

such as PMTest involve significant effort to annotate PM programs,

while PMDebugger minimizes such programmer effort. In terms
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Table 1: Comparison between existing work and PMDebug-

ger.

Perf.
overhead

Bug
coverage

Target
domain

Prog.
efforts

Support of
relaxed models?

PMTest Small Low Any High N

Pmemcheck High Medium PMDK Low N

Persist. Ins. [11] high Medium PMDK Low N

Yat [33] High Medium PMFS Low N

XFDetector High Medium Any Low N

PMDebugger Small High Any Low Y

of the support of various persistency models, most of the existing

tools do not detect bugs specific to the relaxed persistency models,

while PMDebugger does.

Most of existing tools have a similar debugging process: They in-

strument PMprogramsmanually [39] or automatically [8, 11, 33, 38]

to intercept stores, CLF and fences, and then keep track of informa-

tion for memory locations updated and persisted in the program.

Bookkeeping accounts for the major debugging overhead. It orga-

nizes the information formemory locations into a tree-like structure

where each tree node records the persistency status of memory loca-

tion(s). The structure is re-organized from time to time to accelerate

tree operations (e.g., search and deletion). During re-organization,

tree nodes are deleted or merged to record information for a larger

memory location.

2.3 Persistency Model

A persistency model [18, 24, 45] defines the order in which memory

stores persist to PM. There are three common persistency models:

strict persistency, epoch persistency, and strand persistency (shown

in Figure 1).

The strict persistency model (Figure 1a) unifies consistency and

persistency models: Any two stores to PM are guaranteed to be

in an order inferred by observing volatile memory order (i.e., the

consistency order). The epoch and strand persistency models are re-

laxed persistency models: They relax persist ordering, allowing the

order of persists to differ from the order of stores. As a result, they

improve persist concurrency, which in turn improves performance.

The epoch model (Figure 1b) separates execution into persist

epochs delineated by persist barriers (fences). The barrier enforces

that no persist operation after it can happen before any persist oper-

ation before it. Persist operations within the epoch can be reordered

and occur in parallel. Any two stores that conflict due to accesses to

overlapped memory addresses assume the order from volatile mem-

ory order. Any two stores from the same thread and separated by a

barrier are ordered. The epoch model has been frequently studied

in existing work [15, 20] and employed in industry. For example,

Intel PMDK bases their PM transaction mechanisms on the epoch

model. A PM transaction uses TX_BEGIN and TX_END to mark

the beginning and end of an epoch. Stores between TX_BEGIN and

TX_END can be persisted without any order constraint, and the

persist operations must be finished by TX_END.

The strand model (Figures 1c and 1d) minimizes the constraints

on persist dependencies. A strand is an interval of memory execu-

tion. Memory accesses from different strands (no matter whether

…
write A
clwb A
sfence
write B
clwb B
sfence
…

(a) 

P(A)

P(B)

…
Epoch-begin
write A
write B
clwb A
clwb B
sfence
Epoch-end
write C
clwb C
sfence
…

(b) 

P(A) P(B)

P(C)

…
Strand-begin
write A
write B
clwb A
persist barrier 
clwb B
persist barrier 
Strand-end
Strand-begin
write C
clwb C
persist barrier 
Strand-end
…

Strand 0  Strand 1 

P(A)        P(C)   

P(B)

…
Strand 0
Strand 1
JoinStrand
Strand 2
…

Strand 0    Strand 1 

Strand 2

(c) (d) 

Epoch

section

Strand 1

Strand 0

Figure 1: Examples of persistency models. P(x) means a

write to x persists. The blue arrow specifies persist ordering:

(a) strict persistency, (b) epoch persistency, (c) and (d) strand

persistency.

they come from the same thread or not) are concurrent unless ex-

plicitly ordered by the programmer. There is no implicit persist

ordering constraint across strands.

To program with the relaxed models, the programmer often uses

annotations, such as TX_BEGIN and TX_END in PMDK for the epoch

model, and NewStrand and JoinStrand (setting up explicit persist

ordering across strands) for the strand model.

3 CHARACTERIZATION OF PM PROGRAMS

Persistent memory programs, including those using low level prim-

itives and user-space libraries, have at least three components:

memory store instruction, cache writeback (i.e., cache line flush-

ing or CLF) to enforce durability, and memory fences to provide

ordering guarantees. We characterize how the three components

are interleaved and distributed in typical PM programs, which mo-

tivates the design of PMDebugger. We refer to the interleaving and

distribution of the three components in a PM program as the PM

program pattern.

To identify the PMprogram patterns, we develop a Valgrind [49]

tool to instrument the instructions of memory store, cache line flush-

ing (CLWB, CLFLUSH and CLFLUSHOPT) and memory fence (SFENCE).

We use PM programs from PMDK, WHISPER [41], and benchmark

collections from PMTest and XFDetector. Those programs cover the

most common usages of PM, including PM-aware data structures,

databases, and memory caching (listed in Table 4). They use various

persistency models. To cover various read/write patterns, we run

YCSB (loads A-F) [7] against memcached.

We first count the distance between a store instruction and the

corresponding fence instruction that guarantees the durability of

that store. The fence instruction that guarantees the durability of a

store is the first fence instruction following a CLF for that store. The

distance is defined in terms of the number of fence instructions, and

the fence that guarantees the durability of that store is also counted.

The distance could be larger than 1, because the CLF to persist the

store may be issued after the nearest fence (the first fence). As a

result, the nearest fence cannot ensure the durability of the store.

Figure 3 gives an example where the distance between a store to

𝐵 [1] and the fence instruction that ensures the durability of 𝐵 [1] is

larger than 1. We focus on fence when calculating distance, because

it is closely related to how information for memory locations should

be maintained for faster debugging.
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Figure 2: Characterization results. (a) Distribution of the distance between store and the corresponding fence; (b) Percentage

of collective writeback and dispersed writeback in all CLF intervals; (c) Percentage of the three instructions in all of the three.

Fence Store to A[1] Store to B[1]
Write back 

A 
Fence Store to B[2]

Write back 

B
Fence

Write back 

X
… Store to B[3]

CLF interval 

(Dispersed writeback )

Distance: 2 Distance: 1 Distance: 1

Fence interval Fence interval

Distance: 1

CLF interval 

(Collective writeback)

Figure 3: Examples of collective writeback, dispersed write-

back, fence interval, andCLF interval. A andB represent two

cache lines; A[i] or B[i] is an element in a cache line. A dis-

persed interval writes A[i] and B[i], while a collective write-

back writes A[i] and A[j].

Figure 2a summarizes distance distribution: More than 77.7% of

memory stores have distance of 1; less than 4.6% of memory stores

have the distance of 2; less than 2.2% of memory stores have the

distance of 3. In total, 84.5% of memory stores have distance of less

than or equal to 3.

Pattern 1: For most stores, data durability is guaranteed by the

nearest fence.

Inspiration from Pattern 1. Pattern 1 gives us critical infor-

mation on how to store and organize information for memory

locations. Traditional debuggers such as Pmemcheck, PMTest and

XFDetector organize memory locations based on their addresses

into a tree-like structure, for the convenience of searching (for han-

dling CLF) and deleting (for handling fence). This method, however,

comes with the overhead of tree reorganization (e.g., merging and

balancing). This overhead must be outweighed by the performance

benefit brought by tree reorganization. The performance benefit

comes from faster search and deletion. However, Pattern 1 tells

us that the bookkeeping mechanism such as tree re-organization

cannot be amortized very well for many memory locations, because

once the nearest fence happens, the information for the memory

location is deleted, providing little opportunity to gain performance

in the long term. On the other hand, we see some memory locations

survive multiple fences, showing the potential of using the tree-like

structure.

We partition the instruction stream collected from the Valgrind

tool into intervals. Store instructions between two neighbouring

CLF instructions form a CLF interval. Within a CLF interval, if

memory locations updated in the interval are persisted together by

a single cache writeback, then we say this CLF interval has collective

writeback. If memory locations have to be persisted by multiple

cache writebacks, then we say this CLF interval has dispersed write-

back. Figure 3 gives examples of collective writeback and dispersed

writeback. We count the number of CLF intervals that have collec-

tive writeback and dispersed writeback. Figure 2b shows that more

than 71% of all CLF intervals have collective writeback.

Pattern 2: Memory locations updated in a CLF interval are likely

to be persisted together by the same single CLF.

Inspiration from Pattern 2. Pattern 2 gives us critical infor-

mation on whether it is promising to collectively maintain and

update persistency status of memory locations. Collective process-

ing enables fast query on status of memory locations, but can bring

large performance benefit only when the persistency status of many

memory locations can be collectively maintained. Pattern 2 shows

us such potential.

We count the number of stores, CLFs and fences. Figure 2c shows

the percentage of each instruction. In most of cases (except YCSB

A, B, C and F), store accounts for 70% of the three instructions; in

all cases, store accounts for at least 40.2%.

Pattern 3: Store happens more frequently than CLF and fence.

Inspiration from Pattern 3. Pattern 3 informs us that we must

efficiently process memory store because of its frequent occur-

rences.

4 DESIGN

Overview. Figure 4 provides a high-level view of PMDebugger.

As the traditional PM debugging tools [8, 33, 38], PMDebugger

instruments memory store, CLF and fence instructions. PMDebug-

ger splits the instruction trace into intervals delineated by fence

instructions, called fence interval. Within a fence interval, there is

at least one CLF interval.

PMDebugger uses a combination of an array (called memory

location array) and an AVL tree for bookkeeping. We refer to the

combination of the array and tree as the bookkeeping space. The

array is used to store information for memory locations updated in

the recent CLF intervals. Using the array structure, adding infor-

mation for memory locations into the bookkeeping space is fast,

incurring no overhead for re-organizing data. Such fast process-

ing of stores is necessary due to pattern 3. This information about

memory locations is deleted or re-distributed at fence instructions.

In particular, the information for many memory locations in the

array can be deleted at a fence, according to pattern 1, and such

deletion is fast, because PMDebugger only invalidates the array

metadata and does not delete the array. Also, the information for
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Store 
instruction Update

metadataInsert info

Writeback
instruction

Memory location array

AVL tree

Update
metadata

Update 
persistency
status

Fence 
instruction

Invalidate 
metadata

Re-distribute 
or delete info

Figure 4: The overview of PMDebugger.

some memory locations is moved to the AVL tree, for the long-term

benefit of quick searching. This data re-distribution is also driven

by pattern 1.

PMDebugger introduces metadata associated with each CLF

interval. The metadata records collectively if all memory locations

updated in the CLF interval have been persisted or not. Using

the metadata enables fast query: The persistency status of all the

memory locations can be quickly examined to determine their

re-distribution or deletion. Pattern 2 suggests the design of interval-

based metadata.

In the following sections, we describe how PMDebugger uses the

customized data structures (Section 4.1) to enable efficient process-

ing of store (Section 4.2), CLF (Section 4.2) and fence instructions

(Section 4.4). Then, building upon the data structures and algo-

rithms to process instructions, we present rules for bug checking

(Sections 4.5 and 5).

4.1 Bookkeeping of Memory Locations and
Persistency

PMDebugger uses the memory location array to collect information

from store instructions in a fence interval, depicted in Figure 5.

Each element of the array has information collected from a store

instruction, including the memory location address, location size,

and flushing state (i.e., whether the memory location is persisted

by a CLF instruction or not).

Based on the memory location array, PMDebugger tracks and

maintains the information for CLF intervals in a fence interval. In

particular, PMDebugger uses a linked list and each node of the list

has metadata for a CLF interval. The metadata for a CLF interval has

the following information: (1) The beginning and end of the interval,

represented with the array indexes corresponding to the first and

last store instructions in the CLF interval; (2) the address range of

memory locations collected in the CLF interval, represented with

the maximum and minimum addresses of the address range; and

(3) cache flushing state of the interval.

The flushing state of a CLF interval can be either all flushed,

partially flushed, or not flushed. łAll flushedž means all memory

locations updated in the CLF interval are flushed, while łpartially

flushedž and łnot flushedž mean that not all memory locations

or no memory locations updated in the CLF interval have been

flushed, respectively. The above state is updated and maintained

when processing each CLF instruction (see Section 4.4).

The memory location array is fix-sized and used to track memory

locations updated by store instructions in a fence interval, where

Memory 
location info

…
Memory 

loaction array

Metadata for a 
CLF interval

Start index in the array;

End index in the array;

Minimum address;

Maximum address;

Flushing state;

Next pointer;

Start address;

Memory location size; 

Flushing state;

Metadata 

for a CLF 

interval

Memory 

location info

Memory 
location info

Memory 
location info

Memory 
location info

Memory 
location info

Metadata for a 
CLF interval

…

A CLF interval

Next

…

…

A CLF interval

Metadata

Figure 5: The array structure to record information formem-

ory locations.

the number of store instructions is typically less than 100,000. In

the rare case when the array is not big enough, the new memory

locations are added into the AVL tree. At the end of a fence interval,

the elements (and CLF intervals) whose flushing state is łflushedž

are invalidated. The remaining elements of the array are moved to

the AVL tree. In the next fence interval, the array is overwritten

with information collected from store instructions (See Section 4.4).

The AVL tree is used to track those memory locations whose

durability cannot be guaranteed in the short term. Hence, orga-

nizing them into the tree, even though the overhead of tree re-

organization has to be paid, is beneficial in the long term, because

repeated search/insertion are accelerated by the tree.

Using a small array to track store instructions for a CLF interval

has multiple benefits. First, it is simple and has minimal mainte-

nance overhead. Second, it provides better data locality for search.

Third, adding information for a newmemory location into the array

is fast.

4.2 Processing Memory Store Instructions

Given amemory store instruction, PMDebugger performs two steps:

(1) Append the store information right after the last valid element

in the memory location array; and (2) update the metadata for the

current CLF interval. In Step (2), the end index and address range of

memory locations in the metadata are updated. Depending on the

rules for bug checking, processing each memory store instruction

may include extra work (e.g., detecting those repeated stores with

the lack of CLF), discussed in Section 4.5.

4.3 Processing CLF Instructions

Given a CLF instruction, PMDebugger must update the flushing

state of memory locations in the memory location array and AVL

tree accordingly.

To update the states in the array, PMDebugger traverses the array

at the granularity of CLF interval. If the persisted address range in

the CLF instruction is a superset of the address range of any CLF

interval, then the flushing state of that CLF interval is updated to

all flushed. If the persisted address range partially overlaps with the

address range of any CLF interval, then the state of that CLF interval

is updated to partially flushed. The information collected from store

instructions in that CLF interval must be examined individually to

update the flushing state of individual memory locations.

When examining the information and finding that a memory

location is partially overlapped with the persisted address range,
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then the memory location is split into two sub-ranges: a fully over-

lapped and a non-overlapped. The fully overlapped sub-range stays

in the memory location array, while the non-overlapped sub-range

is inserted into the AVL tree. The non-overlapped sub-range is not

appended to the array, because that creates difficulty of tracking

the start/end indexes of the CLF interval in the array. The non-

overlapped sub-range does not happen often.

After updating the flushing states in the array, PMDebugger

traverses the AVL tree to update the flushing states. Since the AVL

tree does not have CLF intervals to collectively annotate the flush-

ing state of memory locations, traversing the tree can be slow.

However, using the memory location array significantly avoids

repetitive traversal of the tree. After updating all flushing states,

PMDebugger starts a new CLF interval by creating a metadata node

in the metadata linked list.

4.4 Processing Fence Instructions

Given a fence instruction, PMDebugger removes those persisted

nodes from the AVL tree or memory location array, because their

durability is guaranteed at the fence.

To remove nodes from the AVL tree, PMDebugger traverses

the tree to look for persisted nodes. To remove elements from the

memory location array, PMDebugger leverages metadata for CLF

intervals to collectively and efficiently search and remove elements

that have been flushed, similar to the way PMDebugger updates

the flushing states when processing a CLF instruction. After the

elements’ removal, if there are elements remaining but not flushed,

they are inserted into the AVL tree. These elements have not been

persisted recently and may need to be tracked for long time. Hence

putting them into the AVL tree may be beneficial for performance.

After processing the memory location array, PMDebugger removes

all metadata for CLF intervals. The array is ready for the next fence

interval.

In the above process of removing persisted nodes/elements,

PMDebugger works on the AVL tree first and then on the array.

Working in this order is useful to improve performance, because

when working on the array, the AVL tree is reduced and smaller,

which is useful to accelerate node insertion.

When inserting elements of the memory location array into the

AVL tree, we grow the tree size, which increases the overhead of

node search and insertion in the future. To reduce the overhead, we

could merge tree nodes as is done in traditional implementations.

However, the merging operation is expensive, because it often

comes with re-structuring the tree. To avoid the above tradeoff

between simplifying tree and the overhead of tree reconstruction,

PMDebugger performs a merging operation, only when the number

of tree nodes is larger than a threshold (500).

4.5 Rules for Bug Detection

Building upon the data structures (Section 4.1) and algorithms to

process instructions (Sections 4.2, 4.3 and 4.4 ), PMDebugger has

the flexibility of implementing or extending any rule for bug check-

ing. PMDebugger supports the detection of ten types of bugs in

the three persistency models. We define the rules to detect five of

them as follows. They are common to all persistency models. We

define the rules to detect bugs specific to the relaxed persistency

models in Section 5. We consider both correctness bugs and per-

formance bugs, following the convention of existing bug detection

tools (Pmemcheck, PMTest, XFDetector, and Agamotto [43]). For ex-

ample, flushing a cache line more than once does not affect program

correctness, but does incur unnecessary overhead; we consider this

a bug.

• No durability guarantee: A persistent memory location is not

persisted after the last write to it. This bug can happen when the

programmer misses CLF or fence instruction. To detect this bug,

after the PM program finishes, PMDebugger checks if there are

any remaining memory locations in the bookkeeping space: If

the flushing state of a memory location is flushed, then the PM

program is missing a fence. If the flushing state of a memory

location is not flushed, then the PM program is missing a CLF.

• Multiple overwrites: The program writes to the same persis-

tent memory location multiple times, before the durability of the

memory location is guaranteed. To detect this bug, when pro-

cessing a store, PMDebugger examines if the memory location to

which the store instruction writes already exists in the array or

tree. If so, PMDebugger reports a multi-write bug. PMDebugger

does not detect this bug for relaxed persistency models, because

multiple overwrites is not a bug in those models.

• No order guarantee: The program cannot guarantee the order

in which writes become persistent. To detect this bug, PMDebug-

ger asks the programmer to specify in a debugger configuration

file which variable 𝑋 must be persisted before 𝑌 and at which

application function. During debugging, PMDebugger maps the

variables to their addresses based on symbol tables or by inter-

cepting dynamicmemory allocations, instruments the application

function, and registers a callback function. When the application

function is called and PMDebugger processes a fence instruction,

PMDebugger checks if 𝑋 is persisted and the durability of 𝑋 is

guaranteed by the fence before 𝑌 .

• Redundant flushes: A store to a memory location is flushed

multiple times before the nearest fence. This bug causes perfor-

mance loss. To detect this bug, PMDebugger checks if the flushing

state of the memory location is flushed when processing a CLF

instruction that persists the memory location. If yes, then a bug

is detected.

• Flush nothing: A CLF instruction does not persist any prior

store. When processing a CLF instruction, if PMDebugger finds

that the memory location persisted by the instruction does not

exist in the bookkeep space, then PMDebugger reports a bug.

5 DETECTING BUGS SPECIFIC TO RELAXED
PERSISTENCY MODELS

The relaxed persistency models can introduce some special bugs

unseen in the strict persistency model.

5.1 PMDebugger Extension

To detect bugs for the epoch persistency model, PMDebugger ex-

tends the information for memory locations in the bookkeeping

space by adding a flag to indicate if the store that writes to amemory

location comes from an epoch section, shown in Figure 6. Process-

ing CLF and fence for the epoch persistency model remains the

same.
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Figure 6: Extension to support a relaxed persistency model.
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Figure 7: Three new bugs in relaxed persistency models.

To detect bugs for the strand persistency model, PMDebugger

sets up a memory location array and an AVL tree for each strand

section. Providing an independent bookkeeping space to each sec-

tion is necessary, because strand sections can happen in parallel,

which can introduce conflicting updates to the array and tree. When

processing store, flush and fence instructions, PMDebugger must

be able to identify the strand sections from which the instructions

come, such that PMDebugger can update the corresponding book-

keeping spaces. Identifying the strand sections for the instructions

can come from hardware support [18] or software instrumentation.

It is possible that multiple strand sections update the same mem-

ory location, but persisting the updates from the strand sections

must follow a specific order specified by the programmer. To sup-

port the detection of mis-ordering, PMDebugger introduces a small

array, and each element of the array is used to track the flushing

state of a memory location shared and updated by the multiple sec-

tions. The array is shared between the sections and used to check

persistency order.

5.2 Rules for Bug Detection

Building upon the above extension, PMDebugger introduces rules

to detect four bugs specific to the relaxed persistency model. The

first three bugs have never been studied before.

• Redundant fences in an epoch section (referred to as re-

dundant epoch fence): More than one fence can exist in an

epoch section as shown in Figure 7a. Unnecessary fences de-

grade performance. To detect this bug, PMDebugger records the

number of fence instructions in an epoch section. At the end of

the epoch section, if the number of fence instructions is greater

than one, PMDebugger reports a bug.

• Violating order guarantee because ofmulti-strands (referred

to as lack ordering in strands): Persisting memory locations

across strands can violate the order guarantee. We use Figure 7b

as an example to illustrate this problem. There are two strands in

Figure 7b. Assume that there is a requirement that persisting 𝐴

Table 2: Software interfaces for PMDebugger.

Register_pmem (addr_base, size, offset) Register a persistent memory location for debugging

Epoch_begin
Mark an epoch region for PMDebugger detection

Epoch_end

Strand_begin
Mark an strand region for PMDebugger detection

Strand_end

must happen before persisting 𝐵 in strand 0. However, in strand

1, persisting 𝐵 can happen earlier and break the order. To detect

this bug, when processing a CLF instruction, PMDebugger checks

if there is any ordering requirement related to the memory lo-

cation persisted by the CLF in another running strand. If yes,

PMDebugger checks if the CLF violates the ordering. If it does,

PMDebugger reports a bug.

• Lack durability guarantee in an epoch section (referred to

as lack durability in epoch): At the end of an epoch, the dura-

bility of all memory locations updated by store instructions in the

epoch cannot be guaranteed. Figure 7c gives an example where

the durability of a memory location 𝐴 cannot be guaranteed at

the end of an epoch due to a missing writeback. To detect this

bug, at the end of an epoch section, PMDebugger processes the

barrier (i.e., fence) as depicted in Section 4.5 and then checks

if there is any memory location in the bookkeeping space that

belongs to the epoch. If yes, PMDebugger reports a bug.

• Redundant logging: In a logging-based transaction in PMDK, a

data object is updated once but logged multiple times. Redundant

logging leads to performance loss. To detect this bug, PMDebug-

ger treats writing the log as a store instruction. The address of the

data object in the log is treated as the address to be stored into in

the store instruction. To detect redundant logging, PMDebugger

uses the existing rule of detecting multiple overwrites. When

łoverwritež happens, PMDebugger reports a bug.

6 IMPLEMENTATION

PMDebugger uses Valgrind [49] to instrument store, writeback

and fence instructions and registers three callback functions (each

instruction has a corresponding callback function) to be called each

time the instructions are intercepted. PMDebugger implements bug

detection rules as individual functions, giving the callback functions

great flexibility to use them for bug detection. The memory location

array is essential for PMDebugger.

PMDebugger has a set of interfaces summarized in Table 2.

Register_pmem in Table 2 is used to register a memory region

for debugging. This API can be embedded into a low-level system

API (such as mmap) to enable automatic annotation. The other APIs

are used to mark code regions for bug detection, not for selecting

variables to test durability and ordering guarantee as in existing

work [39]. Using those interfaces is simple and does not require

deep understanding of applications.

To handle nested transactions, PMDebugger uses the design from

Pmemcheck. Its effectiveness is evaluated in Section 7. In particular,

PMDebugger treats the nested transactions as a single transaction,

delineated by the outermost epoch_begin and epoch_end. This

method is based on the fact that nested transactions do not guaran-

tee data persistence until the outermost epoch_end.
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Table 3: System configurations.

CPU Intel Xeon Gold 5218 CPU @ 2.30GHz, 32 cores

PM 6x128GB Intel DCPMM, App Direct

DRAM 156G DDR4, 2666MT/s

OS Ubuntu 18.04, Linux kernel 5.0

Tools gcc/g++-9.2, Valgrind-3.15

Table 4: PM programs for evaluation.

Name Model LOC Configurations

Micro-bench

synth_strand strand 1.7k

default

b_tree

epoch

981

c_tree 698

r_tree 756

rb_tree 855

hashmap_tx 741

hashmap_atomic 837

Real workloads
memcached strict 23k Memslap (5% set)

redis epoch 66k redis-cli (LRU test)

The current implementation of PMDebugger is designed to de-

bug programs in user space. But PMDebugger can be extended to

debug programs in kernel space. To debug a program in kernel

space, the programmer would have to register the memory space

used by the kernel program using Register_pmem. Then, leveraging

the instrumentation infrastructure of Valgrind, PMDebugger instru-

ments instructions and debugs kernel program, in a way similar to

how PMDebugger debugs the user-space program.

7 EVALUATION

7.1 Methodology

Machine.We evaluate PMDebugger on a machine with Intel Op-

tane DC Persistent Memory Module (DCPMM) [13] using the App

Direct mode of DCPMM. Table 3 shows details.

Benchmarks. To evaluate PMDebugger, we choose a set of

benchmarks including seven micro-benchmarks (one synthetic

benchmark plus six benchmarks from PMDK [15]) and two real

world workloads redis [10] and memcached [35]. Table 4 summa-

rizes all benchmarks, including their persistency models, LOC (lines

of code), and execution parameters. We use these benchmarks, be-

cause most of them are used in previous studies [15, 38, 39]. In

addition, because there is no hardware and applications support-

ing strand persistency [18], we develop a synthetic benchmark

(synth_strand in Table 4) based on two programs (b_tree and

c_tree). In synth_strand, b_tree and c_tree are placed into two

independent strands. All results reported in this section are the

average of ten runs.

7.2 Performance

Figure 8 compares the performance of PMDebugger and Pmem-

check. We choose Pmemcheck for comparison, because it is an

industry-quality detector based on Valgrind [49] as is PMDebug-

ger. To precisely quantify performance overhead without including

instrumentation overhead, we present application execution time

Table 5: The performance improvement of PMDebugger

over Pmemcheck. The second column shows the overall

speedup (including instrumentation time), and the third col-

umn shows speedup without instrumentation time.

Benchmarks With Instru. W/O Instru.
b_tree 2.67x 4.04x
c_tree 1.85x 2.74x
r_tree 1.81x 1.86x
rb_tree 2.24x 3.42x
hashmap_tx 1.34x 1.39x
hashmap_atomic 3.32x 6.83x
synth_strand 2.2x 3.34x

memcached 4.67x 7.89x
redis 2.1x 2.74x

under Nulgrind, which is a Valgrind tool using the same instru-

mentation as PMDebugger without any bookkeeping.

Microbenchmarks. We use seven PMDK-based microbench-

marks. We test each program with a different number of insertions

(1K, 10K and 100K). Table 5 summarizes the results shown in Fig-

ure 8. Compared with Pmemcheck, PMDebugger achieves 2.2x per-

formance improvement on average (up to 3.6x in hashmap_atomic

with 100K insertion). After removing the overhead of instrumen-

tation, PMDebugger has 3.5x improvement on average (up to 7.5x

in the case of hashmap_atomic with 100K insertion). The program

hashmap_atomic has the largest performance improvement, be-

cause the ratio of collective writeback to the total number of CLF in-

tervals in this benchmark is the highest among all benchmarks (see

Figure 2b), which provides opportunities to put most of the memory

location information in the memory location array. hashmap_tx

exhibits relatively low performance improvement, compared with

other benchmarks, because more memory location information

stays in the AVL tree, which degrades performance (detailed in

Section 7.5). For most of transactional programs (b_tree, c_tree,

r_tree, and rb_tree), PMDebugger leads to large improvements

(3.02x on average).

Real workloads. Table 5 summarizes the results for memcached

and redis shown in Figure 8. For memcached, we observe 4.67x im-

provement on average (7.89x when excluding the instrumentation

overhead) over Pmemcheck. For redis, PMDebugger outperforms

Pmemcheck by 2.1x (2.74x when excluding the instrumentation

overhead). PMDebugger performs better on memcached, because

memcached generates manymore store instructions, which provides

more opportunities to reduce debugging time.

Comparison with other state-of-the-arts.We compare with

XFDetector and PMTest (two state-of-the-art debuggers for PM pro-

grams). To enable fair comparison, we do not include their instru-

mentation time, because they use PIN-based binary instrumentation

and annotation-based manual instrumentation respectively, which

is different from the instrumentation mechanism in PMDebugger.

We use all benchmarks listed in Table 4 except the benchmark

r_tree. We do not use r_tree, because PMTest and XFDetector do

not evaluate the performance of r_tree.
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Table 6: Comparison of bug detection capability among Pmemcheck, PMTest, XFDetector and PMDebugger.

No durability guarantee Multiple overwrites No order guarantee Redundant flushes Flush nothing Redundant logging Lack durability in epoch Redundant epoch fence Lack order in strands Cross-failure semantic

Bug cases 44 2 4 6 3 5 4 4 2 4

Pmemcheck ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

PMTest ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

XFDetector ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

PMDebugger ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure 8: Performance comparison. Results are normalized by the execution time of original programswith detectors disabled.

XFDetector causes 370x slowdown (on average) over the orig-

inal program [38], which is much worse than PMDebugger (7.5x

slowdown on average). PMTest causes 3.8x slowdown in our eval-

uation, which is better than PMDebugger (but the performance

difference is less than 100%), because it selectively tests durability

and ordering guarantee. However, PMTest trades performance for

low bug coverage. PMDebugger detects 38 more bugs than dose

PMTest (detailed in Sections 7.3-7.4).

7.3 Bug Detection Capability

We use a dataset containing 78 bugs. 68 of those bugs come from

bug evaluation suites [8, 38, 39], which include synthetic bugs and

reproduced from the commit history of PMDK. Because the bug

evaluation suites do not include those bugs specific to the relaxed

persistency models, we add ten extra synthetic bugs. Table 6 shows

the evaluation results.

PMDebugger detects ten types of bugs (78 bugs in total). A cross-

failure semantic bug means the program reads semantically incon-

sistent data during the post-failure execution. Note that to detect

cross-failure semantic bugs [38], the debugger must have the ca-

pability of pausing and resuming threads at runtime to recover a

program at the failure point; Valgrind used in PMDebugger can-

not do that. To solve this problem, we manually call the recovery

program in benchmarks to detect the cross-failure bugs.

Comparison with state-of-the-art. We evaluate Pmemcheck,

PMTest and XFDetector. PMTest can detect only five types of bugs

(61 bugs out of the 78 bugs) . Its bug detection capability is limited,

because it relies on the programmer to annotate the program and

these annotations also include calls to explicit debugging routines

(the annotation in the benchmarks are added by the PMTest de-

velopers). Pmemcheck and XFDetector detect only four and six

types of bug respectively (55 and 65 bugs respectively), because
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7 #define ITEM_set_cas(i,v) { \

8     if ((i)->it_flags & ITEM_CAS) { \

9     (i)->data->cas = v; \

10 } \

11 }
Modified but not persisted

1 int do_item_link(…) {

2 …

3 /* Allocate a new CAS ID on link. */

4 ITEM_set_cas(it, (settings.use_cas) ? get_cas_id() : 0);

5 …

6 }

1 int main(…){

2 …

3 TX_BEGIN(pop) { // epoch begin

4 map_create(mapc, &D_RW(root)->map, NULL);

5 …

6 } TX_END //epoch end

7 …

8}

9 static void create_hashmap(…){

10 …

11 pmemobj_persist(pop, D_RW(hashmap), 

sizeof(*D_RW(hashmap)));

12 } \

13 }

Redundant epoch fence

1 static void do_alloc (…){

2 …

3 // epoch begin

4 info->name[MAX_BUFFLEN - 1] = '\0’;

5 info->size = size;

6 info->type = type;

7 info->array = alloc_array[type](size);

8 …

9}

10 static PMEMoid alloc_int(…){

11 …

12 POBJ_ALLOC(pop, &array, int, sizeof(int) * size,

NULL, NULL);

13 pmemobj_persist(pop, D_RW(array), 

size * sizeof(*D_RW(array))); 

14 // epoch end

15 …

16 }lack durability in epoch Only persisting the array

(a)

(b)

(C)

Figure 9: New bugs detected by PMDebugger.

they cannot thoroughly examine instructions and have rich rules as

PMDebugger have due to their extremely time-consuming analysis.

False positives and false negatives. We report the rates of

false positive (i.e., treating a correct code as a bug) and false neg-

ative (i.e., missing bugs). The false negative rate of Pmemcheck,

PMTest, and XFDetector is 29.5%, 21.8%, and 16.7% respectively,

while PMDebugger does not have any false negative case. All tools

do not have any false positive case.

7.4 New Bugs Found By PMDebugger

PMDebugger finds 19 new bugs in memcached [35] and two new

bugs (łredundant epoch fencež and łlack durability in epochž) in

PMDK. These bugs were not reported before. Due to space con-

straints, we present only one of the 19 new bugs and the two new

bugs in PMDK (see Figure 9). The remaining 18 new bugs are re-

ported in our tech report [46].

Bug 1: No durability guarantee. Figure 9a shows a code snip-

pet from Items.c in memcached. The program defines a macro

function (Line 7 in Figure 9a) to allocate a new CAS ID. However,

the CAS ID is not persisted (Line 4 in Figure 9a).

Bug 2: Redundant epoch fence.We find this bug in the PMDK

example hashmap_atomic (data_store.c and hashmap_atomic.c,

and shown in Figure 9b). The program declares an epoch sec-

tion (surrounded by TX_BEGIN, and TX_END from Line 3 to Line

6). TX_END inserts a fence instruction at the end of the epoch sec-

tion. However, a function call map_create (Line 4) is redirected

to another call (create_hashmap) that inserts a redundant fence

in pmemobj_persist (Line 11) in the epoch section. This ‘bug‘ is

confirmed by Intel [14].

Bug 3: Lack durability in epoch.Wefind this bug in the PMDK

example array (in array.c, and shown in Figure 9c). This example

has an epoch section where the programmodifies PM from Line 4 to

Line 6. Then alloc_int (Line 10) is called at Line 6 to allocate and

initialize an array structure. However, the program only persists

the modified array structure at the end of the epoch section (Line

14) and does not persist the data (Line 4 to Line 6). This bug is

confirmed by Intel [12].

The above bugs were not detected by other detectors (partic-

ularly, XFDetector and PMTest). For instance, XFDetector uses

memcached, but could not identify the above bugs [38], because it

has to restrict the number of instrumented failure points to reduce

its overhead, resulting in lower bug coverage. PMTest misses the

above bugs [39], because it heavily relies on the programmer, which

imposes big constraints on its detection capability for complicated

applications.

7.5 Other Analysis

Scalability. We use memcached for evaluation, because it is PM-

operation intensive and hence can be used effectively to evaluate

the scalability. We change the number of memcached threads for

evaluation (larger number of threads means higher PM-operation

intensity.). Figure 10 presents the results for Pmemcheck and PMDe-

bugger. The slowdown of Pmemcheck increases almost linearly as

the number of threads increases, while the slowdown of PMDe-

bugger increases much more slowly due to the effectiveness of

bookkeeping. This shows that PMDebugger can effectively reduce

debugging time even in multi-threading environment.

Quantification of AVL tree size. PMDebugger uses the mem-

ory location array to store information for memory locations and

re-distributes it between the array and tree when processing fence

instructions (detailed in Section 4.4). However, a large AVL tree can

degrade performance for search and node insertion. We measure

the average number of tree nodes in all fence intervals to quantify

tree size.

Figure 11 shows the results. We compare Pmemcheck and PMDe-

bugger, because Pmemcheck also uses an AVL tree. In most cases,

the tree size of PMDebugger is less than 25 tree nodes, which shows

the effectiveness of using the memory location array to reduce the

tree size. In hashmap_tx, the tree size is relatively large (528), be-

cause many stores are persisted very late after stores, and data

durability is not guaranteed by the nearest fence. Hence, the infor-

mation for many stores is saved in the tree. But still, PMDebugger

has 1.4x performance improvement over Pmemcheck, which does

not use the hybrid data structure. PMDebugger reduces the tree

size for all benchmarks: For all benchmarks except hashmap_tx

(b_tree, c_tree, r_tree, rb_tree, hashmap_atomic, memcached,

and redis), the tree size is reduced from 17.6 to 8.9 on average. For

the benchmark hashmap_tx, the tree size is reduced from 619 to

528.

Key insight of why PMDebugger works better. In general,

PMDebugger finds bugs that other state-of-the-art solutions (Pmem-

check, XFDetector and PMTest) cannot for the following reasons:

(1) Pmemcheck and XFDetector come with large performance over-

head, which makes PM-debugging too time-consuming to com-

prehensively detect bugs (especially for those complicated applica-

tions). Such a large overhead is unacceptable in real workloads. Such

a large overhead comes from the fact that those debugging tools do

not consider how PM applications are typically programmed. As a

result, their tree-like data structures cannot efficiently be used for

bookkeeping. For example, to debug hashmap_atomic, Pmemcheck

performs 35,9209 expensive tree reorganizations, while PMDebug-

ger performs only 788. (2) PMTest relies on manual annotations to
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Figure 10: Execution time with various number of threads.

reduce debugging overhead, but this results in missed bugs. For ex-

ample, PMTest cannot detect the bug shown in Figure 9a, if PMTest

missed annotating a store (Line 9 in Figure 9a).

8 DISCUSSIONS

Programmer-supplied persistency order. To detect the bug of

łno order guaranteež, the programmer must provide order informa-

tion (see Section 4.5). This is inevitable when the order information

cannot be automatically and correctly derived from programs due

to implicit program semantics. All of the existing tools (e.g., PMTest,

Pmemcheck and XFDetector) ask the programmer to provide or-

der information. In terms of usability, PMDebugger is no worse

than those tools. In fact, using PMDebugger is easier, because the

information only needs to be specified once in a configuration file

(without using any API or UI) and is then repeatedly used during

the debugging process. Other tools (such as PMTest) ask the pro-

grammer to manually specify order information everywhere in the

program, which is laborious.

Annotation difference between PMDebugger and existing

works. Both XFDetector and PMDebugger need only a few annota-

tions to debug. However, XFDetector causesmuch longer debugging

time than PMDebugger (7.5x longer on average). PMDebugger re-

quires much less annotation than PMTest. For example, to debug

memcached, PMTest requires 410 annotations, while PMDebugger

and XFDetector require only 25 and 23 respectively. Adding anno-

tations to use PMDebugger is less laborious for three reasons: (1)

Annotations in Table 2 can be inserted into traditional high-level

PM-programming primitives (e.g., TX_BEGIN and TX_END), such

that adding annotations happens automatically when the program-

ming primitives are used by the programmer; (2) PMDebugger uses

a configuration file, which allows the users to generally specify the

persistence order of certain variables, while PMTest asks the user

to find exactly where the variables are referenced in the program

and annotate them; (3) PMTest introduces annotations customized

to bug types, while PMDebugger does not need those annotations

due to its rule-based detection mechanism.

9 RELATED WORK

Crash consistency debugging. Yat [33] is designed for PMFS [47]

using an exhaustive testing method. Yat incurs extremely large over-

head, and its approach cannot be applied to generic programs due to

its dependency on file system check (fsck) to detect inconsistencies.

Pmemcheck and XFDetector work for applications at the user space.
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Figure 11: Average number of tree nodes in all fence inter-

vals.

They do not leverage PM program patterns to improve debugging

performance. PMTest relies on the programmer to annotate appli-

cations to assist bug detection. It sacrifices debugging accuracy for

high performance.

Static analysis methods (such as NVM-C [16]) identify bugs

before program execution and provide quicker turnaround to fix

bugs. However, they cannot detect bugs related to dynamic mem-

ory allocation. Thus, they can incur false positives and negatives.

PMDebugger does not use static analysis.

Enabling crash consistency on PM. Existing studies propose

a variety of crash consistency mechanisms in software [2, 5, 19, 21,

22, 31, 37, 53, 57] and hardware [23, 25, 28, 36, 44]. NV-Heaps [4],

Mnemosyne [51], and PMDK [15] are libraries to lessen the bur-

den of programmers to build crash-consistent PM applications.

PMFS [47], BPFS [6] and NOVA [55] are PM-aware file systems that

support persistent data storage on PM. DPO [29] and HOPS [41]

introduce efficient persistency models to allow programmers to

build crash consistent applications with various performance and

crash consistency. PMDebugger could be applied to debug these

solutions, since the mechanisms proposed in this work are general

and not restricted by hardware or programming environments.

10 CONCLUSIONS

The existing methods to detect crash-consistency bugs in PM pro-

grams are either very time-consuming or suffer from limited bug

coverage. We use a new approach to examine bug detection for

PM programs. By characterizing PM programs, we find that the

existing methods have a mismatch between the design of data

structures and algorithms and PM program patterns, which leads

to inefficient debugging mechanisms. We introduce PMDebugger.

By considering PM program characterization, PMDebugger enables

high-performance debugging operations without losing bug cov-

erage. Based upon its program pattern-aware data structures and

algorithms, PMDebugger enables efficient bug detection for various

persistency models.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact provides the source code of PMDebugger, a debug-

ger to detect crash consistency bugs for persistent memory (PM)

programs. This artifact also provides a set of example workloads

and necessary dependencies. The design of PMDebugger is driven

by the characterization of how three fundamental operations in

PM programs (i.e., store, cache writeback and fence) typically hap-

pen. PMDebugger leverages a hierarchical design composed of PM

debugging-specific data structures, operations and bug-detection

algorithms (rules) based on the instrumentation of memory store,

CLF and fence instructions. Because PMDebugger is used to debug

PM systems, this artifact requires a real or emulated PM system

and a compatible Linux distribution.

A.2 Artifact Check-List (Meta-information)

• Program: The debugging tool, PMdebugger.

• Data set: Open-source workloads from Intel and Lenovo.

• Hardware: A system with a real or an emulated PM.

• Output: Bug reports for test programs.

• Experiments: Bug detection and execution time.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: GNU GPL V2.0.

• Archived DOI: https://doi.org/10.1145/3410281.

A.3 Description

A.3.1 How to Access. We archive the source code and workloads

at ACM DL: https://doi.org/10.1145/3410281. For the latest version,

you can access our GitHub page: https://github.com/PASAUCMerced/

PMDebugger.

A.3.2 Hardware Dependencies. This artifact expects to use a sys-

tem equipped with persistent memory hardware (e.g., Intel Optane

DC persistent memory module). The user can also use an emulated

PM hardware based on DRAM (see https://pmem.io/2016/02/22/pm-

emulation.html as an example). Note that the real or emulated PM

device must be mounted as a DAX file system.

A.3.3 Software Dependencies. The following is a list of software

dependencies for PMDebugger and workloads (the listed versions

have been tested, and other versions might work but not be guar-

anteed):

• OS: Ubuntu 18.04, Linux kernel 5.0.

• Compiler: g++/gcc-9.2.

• Tool: Valgrind-3.15.

• Dependent libraries: libevent, libseccomp, autoconf, pkg-config,

libndctl-devel (v63 or later), libdaxctl-devel (v63 or later).

A.3.4 Data Sets. The evaluation workloads are as follows:

• Five workloads (b_tree, c_tree, rb_tree, hashmap_tx and

hashmap_atomic) from PMDK [15] and a synthetic benchmark

(synth_strand).

• PM-aware Redis [10] implementation from Intel.

• PM-aware Memcached [35] implementation from Lenovo.

A.4 Installation

The code repository is organized as follows:

• valgrind-pmdebugger/: The source code of PMDebugger (v1.0).

• pmdk/: Intel’s PMDK (v1.8) library, including its example PM

programs.

• memcached-pmem-master/: An Memcached (v1.5.4) implemen-

tation.

• memslap/: The tool (v1.0) to run Memcached.

To build PMDebugger and the test workloads, the user can run the

following scripts:

$ cd <PMDebugger Root >

$ ./ build_pmdebugger.sh

$ sudo -E ./ build_pmdk.sh

$ ./ build_redis.sh

$ ./ build_memcached.sh

In addition, our tool and test programs (workloads) include de-

tailed instructions to build PMDebugger and workloads separately.

A.5 Experiment Workflow

PMDebugger is based on Valgrind. To debug a PM program, the user

directly runs the program with PMDebugger. To detect bugs of łno

order guaranteež, the user is required to specify persistence orders

in a configuration file. During the program execution, Valgrind

automatically intercepts memory store, CLF and fence instructions,

and send them to PMDebugger. Once a bug is detected, PMDebugger

immediately reports it and then continues the debugging process.

After the program is finished, PMdebugger outputs a detailed bug

summary.

A.6 Evaluation and Expected Result

The evaluation includes both bug detection and performance mea-

surement (execution time or system throughput).

A.6.1 Performance Evaluation. We provide scripts to run programs.

The detailed steps to run them are as follows. For comparison

purposes, the user can run Pmemcheck as well. Pmemcheck is an

industry-quality bug detector from PMDK. Both Pmemcheck and

PMDebugger are based on Valgrind.

PMDK examples.We use a script pmdk/run.sh to run all pro-

grams (workloads). The usage of the script is as follows.

$ ./run.sh <CHECKER > <INPUTSIZE > <WORKLOAD >

ś CHECKER: Debugger tool name (pmdebugger or pmemcheck).

ś INPUTSIZE: The number of data insertions.

ś WORKLOAD: The workload to be tested.

For example, to insert 1024 elements into b_tree to evaluate the

performance of PMDebugger, the user can run the following com-

mand:

$ ./run.sh pmdebugger 1024 btree

Redis.We use a script redis/run.sh to run Redis.

$ ./run.sh <CHECKER > <INPUTSIZE >
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ś CHECKER: Debugger tool name (pmdebugger or pmemcheck).

ś INPUTSIZE: The number of LRU tests.

Memcached. We use a script memslap/run.sh to run mem-

cached.

$ ./run.sh <CHECKER > <INPUTSIZE >

ś CHECKER: Debugger tool name (pmdebugger or pmemcheck).

ś INPUTSIZE: The number of operations to execute.

Output. PMDebugger reports all detected bugs (if any) after a

test is complete. The evaluation of PMDK and Memcached pro-

grams includes execution time, and the evaluation of Redis includes

the throughput (i.e., the number of łgetž operations per second).

A.6.2 Bug Detection Capability. We implement the nine bug detec-

tion rules in PMDebugger (see the paper) for various persistency

models. To verify PMDebugger’s capability of bug detection, we add

bug cases. They can be found in valgrind-pmdebugger/pmdebugger/

tests and classified by their bug types.

The bug cases are organized in the following way:

• address_specific/ and logging_related/: Function tests.

• no_durability_guarantee/: A persistent memory location,

since the last write to it, is not persisted.

• multiple_overwrite/: The program writes to the same per-

sistent memory location multiple time, before the durability of

the memory location is guaranteed.

• no_order_guarantee/: The program cannot guarantee the or-

der in which writes become persistent.

• redundant_flush/: A store to a memory location is flushed

multiple times before the nearest fence.

• flush_nothing/: A CLF instruction does not persist any prior

store.

• epoch_redundant_fence/: More than one fence exist in an

epoch section.

• lack_ordering_in_strand/: Persistingmemory locations across

strands violates the order guarantee.

• epoch_durability: At the end of an epoch, the durability of

all memory locations updated by store instructions in the epoch

cannot be guaranteed.

• redundant_logging/: In a logging-based transaction, a data

object is updated once but logged multiple times.

The user can run the following command to verify the bug de-

tection capability:

$ cd <PMDebugger Root >/valgrind -pmdebugger

$ perl tests/vg_regtest pmdebugger

Output. The number of bugs is reported. If no bug is detected,

PMDebugger outputs a file to report the reason.

A.6.3 New Bugs Found by PMDebugger. PMDebugger finds 19 new

bugs in Memcached and two new bugs in PMDK (confirmed by

Intel [12, 14]. Those bugs were not reported before. We provide

scripts to reproduce the detection of those bugs.

• No durability guarantee inMemcached: Use the script memslap/

new_bug1.sh to detect the bugs.

• Redundant epoch fence in PMDK: Use script pmdk/new_bug2.sh

to detect the bug.

• Lack durability in epoch in PMDK: Use script pmdk/new_bug3.sh

to detect the bug.

Output. PMdebugger reports the detected bugs.

A.7 Experiment Customization

For programs based on PMDK, the user can directly use PMDebug-

ger without adding any annotation in the programs. For example:

$ valgrind --tool=pmdebugger ./ WORKLOAD

For more details, please run valgrind --tool=pmdebugger -h.

For other programs, the user is required to insert limited annota-

tions into the programs, such as epoch_begin (VALGRIND_PMC_

EPOCH_BEGIN) and epoch_end (VALGRIND_PMC_EPOCH_END).

Then, after recompiling the programs, the user can debug them in

the above way. Note that those annotations can be inserted into

PMDK APIs, and hence added automatically and transparently.

For example, the user can insert epoch_begin and epoch_end into

PMDK’s TX_BEGIN and TX_END to achieve automatic annotation.
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